Tetris: Predictive Pod Placement Strategy for Kubernetes

CSC 724 Spring 2019
Project Proposal
Vasudev Bongale
Kyle Martin
Sohail Shaikh

21-Feb-2019
Agenda

- Problem Statement
- Idea
- Kubernetes Overview
- Related Work
- Prediction Strategies
- Experiment and Evaluations
- Project Roadmap
Kubernetes does not consider I/O utilization when provisioning pods. This could lead to performance degradation on an I/O bottleneck K8s Node. We propose to introduce a predictive pod placement strategy to avoid resource bottlenecks.
Idea

• Manually categorizing pods by workload type.
 – CPU intensive
 – Memory intensive
 – IO intensive

• Policy based predictive modeling.
 – ARIMA, Gaussian - SVM

• Intelligent placement.
 – Choose a node for a pod
Kubernetes (K8s)

- Automates container orchestration tasks
- Master-Slave Architecture
 - Master
 - Scheduler
 - API Server
 - etcd
 - Node
 - cAdvisor
 - Kubelet
 - Pods

Figure from “A Kubernetes-Based Monitoring Platform for Dynamic Cloud Resource Provisioning” [3]
Monitoring Frameworks

- Monitoring is hard - dynamic cluster
- cAdvisor: built-in monitoring solution
- K8s is now designed to behave as a platform
- Core-metrics-pipeline
 - Metrics-server: does not store historical metrics
- Monitoring-pipeline
 - custom-metrics-API
 - Full monitoring solution: Ex: Prometheus, Datadog
IO-RE

• Load balance decisions
 1. Load\textsubscript{IO} at node\textsubscript{i} updated by Task\textsubscript{j}
 2. Threshold\textsubscript{IO} calculated for node\textsubscript{i}
 3. If Load\textsubscript{IO} > Threshold\textsubscript{IO} Then move task\textsubscript{j}
 4. If Load I/O < Threshold\textsubscript{IO} Task\textsubscript{j} Then execute at node\textsubscript{i}

Equations from "Dynamic load balancing for I/O-intensive tasks on heterogeneous clusters" [1]
Algorithm: IO-CPU-Memory based load balancing (IOCM-RE):

/* Assume that a task j newly arrives at node i */
if $IO(j) + \sum_{j \in N_i} IO(k) > 0$ then
 The IO-RE policy is used to balance the system node; /* see Section 3.2 */
else if $page(i, j) + \sum_{j \in N_i} page(i, k) > 0$ then /* see Section 3.1(2) */
 The memory-based policy is utilized for load balancing;
else /* see Section 3.1(1) */
 The CPU-based policy makes the load balancing decision;

Fig. 1. Pseudocode of the IO-CPU-Memory based load balancing

Pseudocode from “Dynamic load balancing for I/O-intensive tasks on heterogeneous clusters” [1]
PAC

- PAC: Pattern driven Application Consolidation [2]
- Extract resource-usage patterns from VMs using FFT - *signatures*
- DTW (Dynamic Time warping) for signature matching.

- VM placement to provide global application consolidation and load-balancing

- Predicts future resource demands with 50-90% less error
Why is workload prediction necessary?

• Traditionally threshold based policies have been used.
• It's impossible to know the threshold in advance because workload patterns change over time.
• The threshold values are largely dependent on stability of a system.
Predictive Approaches

- Naive
 - Mean, KNN
- Regression
- Temporal
 - ARMA, ARIMA
- Non-temporal
 - SVM, decision trees
 - Least chosen for scaling

No one predictive algorithm to rule them all
(Image source: Wikipedia)
Comparing Predictive Approaches

Figure from "Empirical Evaluation of Workload Forecasting Techniques for Predictive Cloud Resource Scaling [4]"
Our Predictive Approach
Experiment

• Provision Resources:
 • AWS EC2 (2 A1.xlarge)
 • VCL
• Deploy workload generator applications.
 • IOmeter
 • stress-ng
• Collect core system metrics to generate historic data.
• Train predictive algorithms to predict node workload.
• Analyze pod placement decisions.
Evaluations

Native implementation
- No historical data involved for placement decisions
- May result in bad placement choices
- Not workload aware

Tetris
- Show improved resource utilization of entire cluster
- Placement decisions based on its workload
Project Roadmap

Week 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

- Kubernetes Environment Setup: Feb 22 - Mar 1
- Collecting System Metrics: Mar 2 - Mar 10
- Prediction Algorithms: Mar 11 - Mar 25
- Extending K8s Scheduler: Mar 14 - Mar 31
- Testing: Apr 1 - Apr 8
- Experiments and Evaluations: Apr 9 - Apr 15

Vasudev | Sohail | Kyle | Team

Questions?